Code Runner Extension
Semester Report

by

Dian LIN

ID:6916490

UPIL:dlin368

BTech 451
Information Technology
in
Bachelor of Technology

University of Auckland

Supervisor: Dr. Wannes van der Mark

ABSTRACT

Code Runner provides an on-line platform for students to complete
their programming assignments. It supports different programming
languages. It is widely used at the University of the Auckland for
courses from Stage One to Stage Three. To enable each student to
complete their assignments individually, this study aims to research
different ways of Code Runner assignments cheating. The goal is to ex-
tend Code Runner to have parameterized exercises so that each student
is presented with unique exercise. The outcome ideas from research re-
sults will be implemented into the platform in order to make cheating
more difficult in Code Runner.

Contents

1 Introduction 1
1.1 Code Runner 1

1.2 MySQL . . . o 2

1.3 Vulnerability to Cheating 3

1.4 Study Outline 4

2 Brain Storm 6
2.1 Similarity Checking o 6
2.2 Programming Variation 0oL 6
2.3 Functionality Addition Lo 6

3 Research 8
3.1 Similarity Checking Research 8
3.1.1 Research Process 8

3.1.2 Analysis 8

3.1.3 Conclusion 9

3.2 Programming Variation Research 9
3.2.1 Research Process 9

3.22 Analysis 11

4 Anti-cheat Idea Description 13
4.1 Idea 1 13

5 Idea Implementation

5.1 Idea Description
5.2 Proof of Concept

5.3 GUI Mock-up Implementation
5.4 Functionality Build-in

5.4.1 Preparation

5.4.2 Functionality of Prototype

6 Prototype Testing

6.1 Insertion Testing

6.2 Student Answer Testing

6.3 Deletion Testing
7 Discussion
8 Further Work
9 Conclusion

Bibliography

11

14
14
14
16
17
17
18

23
23
23
25

28

29

30

31

Chapter 1

Introduction

Moodle is an open-source learning management system(LMS) [1]. And is an open-
source platform. At the moment, Moodle is extensively used in schools and tertiary
institutions in Australia and New Zealand. It is also widely used in Europe, espe-
cially in Spain and the U.K. The core of Moodle is courses that contain activities and
resources, there are about 20 different types of activities available including assign-
ments, quizzes, choices etc. [2]

At the Department of Computer Science of the University of Auckland, it is used
for programming exercises. Programming assignments are usually required environ-
ments installation such as Java. Moodle provides a way for students to easily complete
their assignments without the installation of programming software and environment
path setting but browsers only. Hence, Moodle as one of the most important tools
in the Department of Computer Science to test students learning abilities. It can
be used to set up coding assignments, multiple-choice questions and simple quizzes.
Moodle is able to run the input source code at the background and immediately gives
the feedback to participants about their submission. For teachers, this activity-based
model combines the activities into sequences and groups. It helps teachers to guide
participants. Also, Moodle contains auto-grading and group courses functionality,
which saves the efforts of the manual. So it is widely accepted by people through the
department.

1.1 Code Runner

Code Runner [3] is a Moodle question type that requests students to submit program
code to some given specification such as Java or Python function. At the University
of Auckland, Code Runner is the main reason for using Moodle, as lecturers or ad-
ministrators can simply post questions by defining question contents and test cases
under specific course list as the assignment build-up. The Sandbox is used to run the
series of test cases for input source code under limited time which prevents infinite

loops or deadlocks from blocking the system. The outputs are compared with ex-
pected answers and used to automatically mark the assignment works upon given a
marking guide. The Sandbox using keeps Code Runner safe since it could effectively
prevent malicious code injection which could be used to guard the system.

Every participant should be able to pass all test cases that are pre-defined by ques-
tion creators in order to gain the full marks, Code Runner becomes a convenient and
useful tool. Because it helps students getting more and more familiar with testing
topics which introduced in lectures. And encouraging students to gain more marks
in terms of splitting a large assignment into several simple questions.

Moodle provides a large database for Code Runner to store data. Each question
creation will create a new record inserted into Moodle database(MySql Database,
will be mentioned in the following section), instead of searching created questions
in Code Runner website, authorised people could simply look up and modify every
question details by SQL. To connect Code Runner with Database Management Sys-
tem(DBMS), Code Runner becomes more feasible to handle its functionality.

The output of different feedback of Code Runner is presented in Figure 1.1.

ihe number s odd, prin oud, or prin‘even’ oherafse.

Expocted | G0t Tost Expected Gt

Incanest

Figure 1.1: Code Runner output feedback of correct and wrong answers

1.2 MySQL

MySql is an open-source relational database management system(RDBMS), and writ-
ten in C and C++. [6] As the advantage of MySq]l, it is allowed users to create relation-
ships between tables by primary keys and foreign keys. This feature helps database
become more consistency, and users are able to look for particular data quickly. In
Moodle, lots of data there need to be recorded and tracked, MySql database becomes
a good tool to manage the platform.

1.3 Vulnerability to Cheating

Code Runner is an online tool that automatically tests and marks students’ assign-
ments by comparing answers to predefined outputs. This is a significant weakness
of Code Runner because it is not able to detect cheating. Students could simply
copy-paste the source code from someone else who hold the same question and al-
ready passed all test cases. Those students would be able to gain the marks without
putting any efforts. Assignments cheating is not allowed by the University. Some
damaging effects would be caused by Code Runner assignments cheating:

e Unfair to hard working students and lecturers:

Most of students in the University put lots of efforts on their assignments,
they usually spend time on studying and preparing assignments. It is quite
unfair for those students who hard working are getting the same grade as those
who cheating on assignments. Also, lots of efforts are put by lecturers to pre-
pare teaching materials and create assignments. If cheating becomes possible,
it would be unfair to lecturers as well.

e Lost faith in Code Runner:

This is a significant effect impact the University. Once cheating becomes a
possible way to solve the assignments, the quality of students is not able to be
evaluable. Reputation of the University will be reduced due to students lost
their faith in Code Runner.

e More students are possible to cheat on assignments in Code Runner:

If cheating is allowed in Code Runner, more students would try it to save
time for fun. As students could get the same grade even they cheat. Then the
learning ability of students is poor,even though cheating students could pass
the course, it does not mean that those students have obtained the knowledge
that required by the course.

The basic principle of whatever assignments or Code Runner tests at the Univer-
sity of Auckland is that it encourages students to do individual works in order to
obtain the skills and ideas that required by the courses. Therefore, if Code Runner
is going to be treated as one of the main assignment parts, it is necessary to push up
barriers against cheating in Code Runner.

1.4 Study Outline

In this project, we will first research on Code Runner program before idea implemen-
tation. In research, useful information will be obtained, and becomes the guideline to
implement ideas properly, so that we will not waste our time on unnecessary coding.
Based on research results, the following ideas implementation would be much simpler
and easier because of the corrected guide direction. The workflow indicates what the
steps of the project will be:

Brain Storm

Fesearch

Feasible ideas
implementation

Implementation
testing

Figure 1.2: Study flow chart

Chapter 2

Brain Storm

Before starting research and ideas implementation, some of the new ideas should
generate to provide a direction to build up barriers against cheatings.

2.1 Similarity Checking

The most straightforward idea that appeared into our mind is to check the source
code for similarity. Because different courses would have different assignments, then
the assignment difficult may differ to each other. Base on course requirements, setting
up similarity tolerance between source codes as one barrier to against cheating.

2.2 Programming Variation

For the same programming language, source code could be possibly found from web-
sites. To determine that if the answers to Code Runner questions could be easily
found on the website, some research have to be done.

2.3 Functionality Addition

Additional functionality could be possibly added into Code Runner platform (code
implementation) so that Code Runner is able to have several options for one question,
and each option has similar difficulty to each other. Assign each option to every
student, in this case, most of the students would have different questions(options),
which reduces the possibility of assignment cheating.

The tables in next page gives the layout of ideas so far.

Table 2.1: Same Assignment

Cheating ways | Difficulty of Cheat | Prevention | Changes Feasibility
Submission Basy Similarity | Sandbox to Common
Copy and checking check codes way against
paste similarity cheating.
Research
required

Others Basy Assignment | Extra time | Further discussion

who have interview required

finished

assign-

ment

coding for

students

Table 2.2: Different Assignments

Cheating ways | Difficulty of Cheat | Prevention Changes Feasibility
Looking Intermediate Everyone Create Unique
for similar has wunique | more vari- | assignment
solutions assignment | ants in one | reduces

question cheating
probability
Online so- Hard Pre-defined | define class | Research
lutions or questions used in required to
languages preferred Code Run- |see if it’s
transla- ner feasible
tion

Chapter 3

Research

Research for this chapter is done in ground lab room, Department of Computer Sci-
ence, the University of Auckland.

3.1 Similarity Checking Research

3.1.1 Research Process

This study will focus on the coding part in Code Runner. Most of Code Runner users
are Stage One students, and programming coding is the main part for those Code
Runner students. In order to reduce the research error, the obtained dataset should
follow some basic rules.

e People from different backgrounds, did not know each other.
e Source code obtained should be comparable, Compscil05 was selected.

e Source code with different lengths should be selected including longest and
shortest ones.

3.1.2 Analysis

In order to compare the similarity between different source codes, one online tool,called
CopyScape [4], is used to determine the similarity in percentage.

The shortest code length which is 3 coding lines is firstly being checked, the similarity
is 100%, which is normally acceptable due to short program length. Then different
source codes with different lengths are compared, the average similarity percentage
reaches 77%, while the longest program gives the similarity with around 56.5%. There
is a high probability that Code Runner submissions are similar even though student

8

are not cheating. The summarized statistic table is presented below:

Table 3.1: Summarized Table

Program Length Similarity Percentage
3 (shortest) 100%
3 lines - 67 lines 68% - T7%
67 lines 56.5%
Median length: 30 lines | Median similarity: 76.7%

Therefore, students who use Code Runner for assignments normally write very short
programs. We determined that the median coding length in Code Runner is around 25
to 30 lines. This implies that high percentage similar of the submissions would occur.
Furthermore, all courses are using the same question for all participants. Since stu-
dents in each course were lectured by same lecturers, reading the same slides, attend
same tutorials and see same examples, it is highly likely to have the high similarity
coding results if the median program length is relatively short. In this case, even
though students are not cheating each other, a high similarity is still possible.

3.1.3 Conclusion

Similarity checking in Code Runner server is not a feasible anti-cheating approach. A
high similarity between submissions due to short program length, questions are same
and the solution is mostly based on lecture topics.

3.2 Programming Variation Research

3.2.1 Research Process

Three example types of questions were selected for our research. Instead of random
selection, we selected questions from the typical topics, such as the recursive ques-
tion, pre-defined question. Also, three common but popular sorting ways, Bubble-
sort, Insertion-sort and Merge-sort, which is an important topic, were selected as well.

After question selection, we started searching the solutions or available sources on
the website. Although Python is used for Compsil05 coding, different solutions of
programming languages were still searched. First of all, three sorting algorithms were
searched, and the answers(source code) that presented and would be able to pass
the Code Runner questions as these codes have passed all test cases that we used to
test the code accuracy. Three search terms and quantitative data of hits to pages
are presented in Figure 3.1, Figure 3.2, Figure 3.3.Three searched source codes are

10

-

Go gle Bubble sort python
Al images Videos News Maps Morew Searchtools

About 146,000 results (0.27 seconds)

Figure 3.1: Search term and hits to pages for bubble sort

Go gle insertion sort python S B
Al Videos mages News Maps More ~ Search tools
About 104,000 results (0.24 seconds)

Figure 3.2: Search term and hits to pages for insertion sort

Go gle merge sort python . ﬂ

Al Videos mages News Maps More ~ Search tools

About 232,000 results (0.41 seconds)

Figure 3.3: Search term and hits to pages for merge sort

def bubbleSortialist):
for passnum in range(len{alist)-1,0,-1}:
or i in range (passnum):
if alist[il>alist[i+1]:
temp = alist[i]
glist[i] = alist[i+1]
alist[i+1] = temp

print(alist)

Figure 3.4: Searched source code for bubble sort

def inseztionSorzt(alist):
for index in rangel

enfalistc)):

lue = alist[index]
pesition = index

alist[position]=aliss[posisicn-1]
position = position—l

alist[pesition]=currentvalue

alist = [

inserticn!
print(alist)

Figure 3.5: Searched source code for insertion sort

presented in Figure 3.4, Figure 3.5, Figure 3.6. [5]

Secondly, solutions of the recursive algorithm for a sum-up question has been searched
from the website. More than one programming language gives the solution and ex-
planation for the recursive algorithm of sum-up including Python, Java,etc. Research
term and hits to pages are presented in Figure 3.7. Source code is presented in Fig-
ure 3.8. [5]

However, pre-defined questions were not easily to search the solution codes as each

11

def mergeSort (alist):
print ("Splitting ",alist)
if len(alist)>1:
mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]

mergeSort (lefthalf)
mergeSort (righthalf)

i=0
j=0
k=0
while i < len(lefthalf) and j < len(righthalf):
if lefthalf[i] < righthalf(j]:
alist([k]l=lefthalf[i]
i=i+l
else:
alist[kl=righthalf[]]
J=j+1
k=k+1

while i < len(lefthalf):
alist[k]=lefthalf[i]
i=i+1
k=k+1

while j < len(righthalf):
alist[k]=righthalf([]]
j=j+1
k=k+1
print ("Merging ", alist)

alist = [54,26,93,17,77,31,44,55,20]

mergeSort (alist)
print (alist)

Figure 3.6: Searched source code for merge sort

Go gle recursive sum python U] B

Al Images Videos News Maps Morew Search tools

About 213,000 results (0.37 seconds)

Figure 3.7: Search term and hits to pages for sum recursive

def listsum(numList):

Figure 3.8: Searched source code for recursive

pre-defined question requires using the same method and variable names from class
which is already defined by question creators.

3.2.2 Analysis

Based on the result of research and source obtained, students were asked to solve the
questions based on lecture topics in Code Runner. Questions could be popular or
rare, and because of this reason, popular topics are easy to find available source while

12

rare ones could only find the general description. By considering three sorting ways
in this research, the full source code can be found on the websites. it is easy to do
programming languages translation by translating known code to other languages. It
reveals that programming languages translation is an unavoided personal skill which
we are not able to detect. One the other hand, if we look at the research result
of pre-defined questions. Code Runner actually defined its own class for students
to solve the question based on the variables and method names which were already
provided by questions. In this case, it is highly unlikely to get the full source code
but conception from the Internet, which is helpful for Code Runner participants as it
somehow encourages students to solve the problems independently by reviewing the
lecture slides, recordings, and try to understand the provided class.

Conclusion

Answers to Code Runner questions are possibly being obtained on the websites. The
programming languages translation skill cannot be detected by Code Runner. Pre-
defined questions become a preferred question creation way in Code Runner, it pre-
vents students from searching source code online, instead, encourages participants
to do more revision and learn themselves (individual works). This implies that pre-
defined questions is another barrier to against cheating, and should be widely used in
Code Runner. However, it can’t prevent copy-paste cheating, hence, some function-
ality should be implemented into Code Runner platform.

Chapter 4

Anti-cheat Idea Description

4.1 Idea 1l

The idea here is to create more than one option for one question creation, and each
option contains different variants. For example, lecturer or administrator could create
Boolean question with options Even and Odd, for each option, has its own test cases
and expected answers. Then assign options to different students to make sure every
student is offered different assignments. In this case, the probability of assignment
cheating will be reduced, and that means the barrier against cheating is pushed up.
The requirements of the implementation are shown below.

Requirements:

e Even difficulty for assignment variants.
e Still easy to use.
e Maintain the functionality that Code Runner provides.

e Possible to integrate Moodle/CodeRunner.

13

Chapter 5

Idea Implementation

The most promising idea to implement for Code Runner is shown in Chapter 4 Sec-
tion 'Idea 1’ to make sure every participant gets different questions when they are
doing assignments. In order to realize this idea, more functionality should be added
to question creation page in Code Runner.

5.1 Idea Description

5.2 Proof of Concept

The idea above relates to question creation page but other functionalities are possible
to remain what they used to be in Code Runner. Since Code Runner is a large ques-
tion type in Moodle, if we try to modify the elements in question creation page, other
related functions and arrays type should be modified as well, lots of works need to
be done in order to build up the barrier. We do not know yet if the idea will work in
Code Runner, thus a test should be made before we move to Code Runner, creating
one prototype. Here we will use Java to build the prototype.

For the prototype, the GUI mock-up should be same as Code Runner but additional
"Option’ input area for question creators. Also, it might be good to keep question
options in the teachers interface to show all question variants. While student interface
should be equivalent as Code Runner presents currently.

Because Java is chosen as the language to build up the prototype, as an open source
library in Java, JComponent is used to build the interface. The GUI can be presented
properly using two components of JComponent, JFrame and JPanel. Java connection
library allows Java programming to easily and fast connect to MySql database that
Code Runner uses to maintain all question variants, to connect to MySql database is
the most significant step for prototype build-up.

14

15

The following images show the interface of question creation that presents in Code

Runner, which is what the prototype supposes to have as the outcome.

- = ueneral
Current category Default for Java testing codes only (1) & Use this category
Save in category

Question name* |Check i nput s odd or even

Question text*

1o py the followi

String oy
return ~

i

Path: p

Default mark™ (1

eral ck (2 N
Generalfoedback @ | T

E SEIE

oddfven

Path: p

Figure 5.1: Question Creation page in Code Runner

Testcase 1 [system.out.printintoddorEven(0));

Standard Input

Expected output -

Row properties: | Use as example Display | show 3 Hide rest if fail Mark 1.000
Test case 2 [System.cut.println(addOrBven(l)];
Standard Input
Expected output | cdd
Row properties: | Use as example Display | Show = | [Hide rest if fail Mark 1000

Figure 5.2: Question Creation page in Code Runner

As what have presented above, question name, question description and test cases
are all necessary parts that will be inserted into MySql database for students answer
comparison. Therefore, in the prototype, we not only have to present proper GUI
mock-up, but also have to make it functional, which indicates that all inputs from
question creation text area in GUI mock-up should be also inserted into correspond-
ing tables as what Code Runner does, and should be able to run students input as

Java programming.

16

5.3 GUI Mock-up Implementation

JFrame and JPanel in Java library are mainly used to present interface of question
creation, ’Option’ functionality is added into interface, and for each option created,
the variants records for the option will be inserted into local table (JTable, not MySql
database at the moment) which allows teachers to view all variants of corresponding
options created. Furthermore, 'Preview’ button will bring teacher view to student
view (student Code Runner assignment interface) for further testing. The prototype
interface shows below.

[Quston Graton T T B _______________ Gl)

Enter the Question Option. B

Question Description

Sample Answer

Figure 5.3: Question Creation page at GUI mock-up

The variants in teachers view (local database) will be stored once option created and
displayed at question creation page, shows below.(Odd and Even options as the ex-
amples)

Question table below after first question being created

A B c D E F G
Option CQuestion Descripti...|Sample Code TestCase Expected output1! |TestCase2 Expected output1
Odd This is Odd test public static boole... |System.out.printin(... [false System.out.printin(_.. |true
Even This is even test public static boole... [System.out.printin(...[true System.out.printin(...[false

Figure 5.4: Local variants database(JTable)

The student view can be shown up by 'preview’ function which is also available in
Code Runner. The emulated student assignment view shows in Figure 5.5.

After GUI mock-up creation, the basic framework of Code Runner prototype is suc-
cessfully implemented, and ready to build functionality into GUI mock-up so that

17

|)] Student View = | B S

Question Option:
Option goes here

Question Description:
Question content goes here

Your code here:

Submit

Figure 5.5: Student question view

it is able to deal with the input data and output comparison as what Code Runner
does.

5.4 Functionality Build-in

5.4.1 Preparation

Before implementing the functionality, MySql database structure needs to be re-
viewed, as all data display in Code Runner are retrieved from the database, because
what we need to focus on is question creation part. By adding questions to a specific
course, 4 tables are modified. This indicates that those 4 tables are related to ques-
tion creation and answers comparison, because the expected outputs are also defined
in question creation part. Thus, when implementing functionality build-up, question
variants inputs should be treated as records and inserted into corresponding tables
as Code Runner did for further discussion. The following 4 circled tables in MySql
database will be used.

18

mdl gtype_shortanswer_options
mdl_question
mdl_qQuésTivn_answers

mdl guestion attempt step data
mdl_gquestion_attempt steps
mdl_question_attempts

mdl_question_calculated
mdl_question_calculated options
mdl_gquestion_categories
mdl_question_coderunner_options
mdl_question_coderunner_tests
mdl_question_dalasei_definitions

Figure 5.6: MySql database tables

5.4.2 Functionality of Prototype

DataBase Schema

The database schema of 4 tables above are needed, to insert records into the corre-
sponding tables. The following 4 tables(Table 4.1-Table 4.4) present the schema for
each useful header that probably be used in further

Table 5.1: mdl_question schema

Field Type Null | Key

id bigint(10) | No | PRI
category bigint(10) | No | MUL
name varchar(255) | No | MUL
questiontext longtext No
qtype varchar(20) | No

Mdl_question table above gives several headers that used in question creation part.
This is the question table which maintains all questions id including Code Runner
questions etc. Category header indicates the course number in Code Runner such as
CompscilOl. Name and questiontext headers gives the question name and question
description. The qtype in this project is defined as CodeRunner.

Mdl_question_categories gives the course description with id as primary key. And
maintain the course name.

Mdl_question_coderunner_tests links the question test cases to corresponding ques-
tions by building up the relationship chain. The testcode stores the test cases. The

19

Table 5.2: mdl_question_categories schema

Field Type Null | Key

id bigint(10) | No | PRI
name | varchar(255) | No
contextid | bigint(10) | No | MUL

Table 5.3: mdl_question_coderunner_tests schema

Field Type Null | Key

id bigint(10) | No | PRI
questionid | bigint(10) | No | MUL
testcode longtext | YES
stdin longtext | YES
expected longtext | YES

mark | decimal(8,3) | No

stdin and expected headers indicate the sample answer and expected output for each
test case respectively. The mark header in Code Runner question type is using ’al-
lornothing” model which means students are able to gain full mark only if their sub-
mission passes all test cases, otherwise they got zero.

Table 5.4: mdl_question_coderunner_options schema

Field Type Null | Key

id bigint(10) | No | PRI
questionid bigint(10) | No | MUL
coderunnertype | varchar(255) | NO | MUL
prototypetype | tinyint(1) | No | MUL
allornothing tinyint(1) | NO

Mdl_question_coderunner_options table gives the options for question creation in Code
Runner. The coderunnertype provides the options of programming languages such as
Java, Python. The prototypetype normally is defined as 1 if the question is created
and allornothing is the one that has been declared above.

The entity relationship diagram(ERD) for above four tables are presented in Fig-

20

ure 5.7.
After related schema has been checked, the functionality is now ready to implement.

Relationships of Tables

1

many id(primary key)

id(primary key)

— category

many 1 questionid
name. textcode
questiontext stdin
qtype expected
N mark

id(primary key)

1 - many questionid
— - d(primary key) coderunnertype
name
— prototypetype
contexti
allornothing

Figure 5.7: Relationship of tables

Functionality Implementation

Based on the database schema above, in the prototype, necessary SQL should be
coded to make sure that each button click will lead to records insert or delete from
MySql Database. For example, for each time the "Save’ button is clicked, the SQL
presented in Figure 5.8 will be executed by MySql Database connection to insert input
variants. Where "Default for CS101’ is the already created course in Code Runner.

For "Deletion’ button clicked, corresponding records in the local database and MySql
Database server should both be removed. The SQL presented in Figure 5.9 will be
executed by MySql Database server to delete the selected record. Furthermore, refer
to Figure 4.5, the student input should be added into a runnable Java program once
‘submit’ button is clicked. The prototype should be able to run students input at
the background and bring the feedback immediately. By checking the way that Code
Runner did is to create a new Java file contains student input and run the file at the
Sandbox, which looks as presented in Figure 5.10.

In order to follow the way that Code Runner did, the codes presented in Figure 5.11
will be creating a java file which contains student input and executed it at the Java
Running Environment(JRE). Finally, the program will retrieve the expected answer

21

try{

stmt = (unn.(reatestatement();

String insertcCategories = "INSERT INTO mdl_question_categories (name,contextid,info) " +
"VALUES ('Default for €S181','17','The default category for questions shared in context firstTesting.')";

String insertQuestion = "INSERT INTO mdl_question
(category,name,questiontext,questiontextformat,generalfeedback,qtype) " + "VALUES ('17',
+"',""+questionDescription+"','1", 'odd/even’, 'coderunner')";

stmt.executeUpdate(insertCategories);

stmt.executeUpdate(insertQuestion);

String getQuestionid = "SELECT id FROM mdl_question ORDER BY id DESC LIMIT 1";

rs = stmt.executeQuery(getQuestionid);

if (rs.next()){

questionid = (int)rs.getLong(1);

"+option

}
String insertcCroptions = "INSERT INTO mdl_question_coderunner_options
(questionid,coderunnertype)” + "VALUES('"+questionid +"','java_method')";
String insertCrTestl = "INSERT INTO mdl_question_coderunner_tests
(questionid,testcode,expected)" + "VALUES('"+questionid+"','"+casel+"','"+outl+"')";
String insertCrTest2 = "INSERT INTO mdl_question_coderunner_tests
(questionid,testcode,expected)" + "VALUES('"+questionid+"','"+case2+"','"+out2+"')";
stmt.executeUpdate(insertCroptions);
stmt.executeUpdate(insertCrTest1);
stmt.executeUpdate(insertCrTest2);
}Jcatch (SQLException se){
se.printStackTrace();
1

Figure 5.8: insertion SQL in java program

try{
stmt = conn.createStatement();
string getQuestionid = "SELECT id FROM mdl_question ORDER BY id DESC LIMIT 1";
rs = stmt.executeQuery(getQuestionid);
if(rs.next()){
questionid = (int)rs.getlLong(1);
3

String getCategoryid = "SELECT id FROM mdl_question_categories ORDER BY id DESC LIMIT 1";
rs = stmt.executeQuery(getCategoryid);
if(rs.next()){
categoryid = (int)rs.getLong(1);
}

int categoryRecordToDelete = categoryid - deleteClicked - saveClicked + Integer.parselnt
((string)table.getvalueAt(rowNumber,0));
int questionRecordToDelete = questionid - deleteClicked - saveClicked + Integer.parselnt
((string)table.getvalueAt(rowNumber,0));
String deleteCategories = "DELETE FROM mdl_question_categories where
id=""+categoryRecordToDelete+""'";
String deleteQuestion = "DELETE FROM mdl_question where id='"+questionRecordToDelete+
String deleteCrOptions = "DELETE FROM mdl_question_coderunner_options where questionid="" +
questionRecordToDelete + "'";
String deleteCrTests = "DELETE FROM mdl_question_coderunner_tests where questionid="" +
questionRecordToDelete + "'";
stmt.executeUpdate(deleteCategories);
stmt.executeUpdate(deleteQuestion);
stmt.executeUpdate(deleteCroptions);
stmt.executeUpdate(deleteCrTests);
}catch (SQLException se){
se.printStackTrace();
}

Figure 5.9: deletion SQL in java program

by unique questionid from MySql Database server and compare answers in order to
bring the feedback to the terminal.

By now, it seems proof-of-concept process has been done, all required user interfaces
and functionality have been implemented in Java. The next step should bring the
proof-of-concept program to testing part in terms of checking MySql Database records
and answers comparison results.

Customisation

Template @ [public class Main
STUDENT_ANSWER
public static woid main(Stringl[] args)

Main main = new Main();
main.runTests();

Grading (7) | Exact match i)

Result columns (2) |

Figure 5.10: deletion SQL in java program

try {7
writer = new BufferedWriter(new OutputStreamWriter(

new FileOutputStream("StudentAns.java"), "utf-8"));
writer.write("public class StudentAns{\n"+studentAns+"\npublic
static void main(String[] args){"+testcasel +"}}");
} catch (IOException ex) {
System.out.println("Exception caught");

Figure 5.11: Java file making code in java program

22

Chapter 6

Prototype Testing

In order to test if question variants from text area of GUI mock-up are successfully
inserted into MySql Database server and the deletion works, we have to go back to
corresponding tables for records checking.

6.1 Insertion Testing

Based on GUI mock-up, Figure 6.1 shows the pen-testing input for question creation.
After all variants from text areas are saved, MySql Database shows that records from
corresponding tables that declared above have been modified. Inserted records have
been circled in Figure 6.2. Refer to input variants, the inserted records are the data
from the question that we just created. Therefore, the insertion has been successfully
completed.

6.2 Student Answer Testing

After the question has been created and inserted into the server, we go to student
question view to check if the program is able to create Java file contains student
answer and run the new student Java program at the background. Figure 6.3 presents
the testing code which refers to the question that just created. And a new Java file
contains the testing code has been created and presented in Figure 6.4.

After the 'Submit’ button that displays is clicked in Figure 5.3, the feedbacks bring
back to the terminal for both correct and incorrect answers, which is presented in
Figure 6.5 and Figure 6.6 respectively.

By now, variants creation and partial sandbox functionality(read and execute students
input) are both working well and able to connect MySql Database server. Because
the created variants are able to present to students and insert to the database tables.
And the prototype is able to execute answer from students and gives feedback to

23

Question option

= Enter the Question Option:
odd

Suect
LU

|
4
Question Description

Tiis 1 a test for emulating coderunner in java

LY EonGion

) Sample Answer

[public static String checkadd(nt numben) {
String is0dd = "false”;
if(number%

1){
is0dd = "true”;

b
return isodd;

Input test cases

test case 1

5ystem.out. printin(checko dd(3));

test case 2

Expected outputs

Expected output for test case 1

)

Expected output for test case 2

Delete

Figure 6.1: Testing variants input

B
£l
2

mysql> select id,name from ndl_question
el - -
id | name

BUILT_IN_PROTOTYPE_c_function
BUILT_IN_PROTOTYPE_c_progran
BUILT_IN_PROTOTYPE_java_class
BUILT_IN_PROTOTYPE_java_method
BUILT_IN_PROTOTYPE_java_program
BUILT_IN_PROTOTYPE_octave_function
BUILT_IN_PROTOTYPE_php
BUILT_IN_PROTOTYPE_python2
BUILT_IN_PROTOTYPE_python3
BUILTIN_PROTOTYPE_Python3_w_input
Check if input is odd or even
alert test case

something

asdf

asfdfas

asdfasdf

asfdfas

asdf

odd

e e e e e e e e e e =

b,

mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>

T I EELFELEI T IRTE
|

new records added
to related tables

select id,questionid from mdl_question_coderunner_options where questiont]
6.

+ =
| id | name |

| Default for €S161 |
| Default for Miscellaneous |
| Default for Systen |
| Default for Front page |
| CR_PROTOTYPES |
| quiz |
| Default for new quiz |
| Default for second quiz |
| pefault for Quiz Test |
| Default for Quizz |
| Default for alert testing |
| Default for okok |
| Default for okok |
| Default for asdfas |
| Default for soemthing |
| pefault for |
[Default for €s161 |

17

dian@dian-virtual-machine: ~
| sys1
sys2
| |

System.out.println(checkodd(3));
I

k- o
34 rows in set (0.00 sec)

mysql> I

mysql> select id,name from mdl_question_categories;
[, -

ty B ©) o353 i

CT|

Figure 6.2: Insertion check

25

Q Input test cases

test case 1

Student view

= Question OpEioT——
1
Question Description:
test case 2 e
B
) Expected outputs
i
Expected output for test case 1
L
/ Your code here:
ublic static String checkOdd(int number){
= Expected output for test case 2 [string isodd = "false”;
iftnumberd2==1){
is0dd = "true;
}
@, return isOdd;
H Submit
Question table below after first question being created
fl A B [€ [D [E [F [< H
¥ Woption Number |option |Question Description |Sample Code [TestCasel |Expected outputl |TestCase2 |Expected outputl
| [odd [This is a test for emulating c... |public static String chack0dd... [Syst m. ouE. printir 0dd... frue [[
I =
=

9

CH|

Figure 6.3: Testing code input

= StudentAns.java X

1 public class StudentAns{
2 public static String checkodd(int number){

3 String isodd = "false";
4 if(number%2==0){

5 is0dd = "true";
6 1

7 return isodd;

8}

9

10 public static void main(String[] args){System.out.println(checkodd(3));}}

Figure 6.4: Created Java program

the terminal. As Code Runner is also able to remove unnecessary variants from the
server, which takes us to the last testing step.

6.3 Deletion Testing

Refer to GUI mock-up, the local database table (JTable) gives all the variants that cre-
ated, if the deletion has been successfully done, record in JTable and MySql Database
will be both removed after 'delete’ button being clicked.

En
2 In,
put test cases
— test case 1
=l
test case 2
(] dian@dian-virtual-machine: ~/Desktop
= dian@dian-virtual-machine:~/Desktop$ javac FirstImp.java
dian@dian-virtual-machine:~/Desktop$ java FirstImp
successfully
Expected outputs System.out.println(checkodd(3));
true
Expected output for test case 1 ou have passed test case!
]
L
B Expected output for test case 2
Question table below after first question being
il A B I G H
g Option Number |option |Quesl |TestCase2 |Expected outputl
i [odd [[

Figure 6.5: Feedback for correct answer

ty B <) o3se

Terminal

Pictures

Places p— ™
© Recent 1 I i n |
A Home Screenshot from Screenshotfrom Screenshotfrom Screenshotfrom Screenshot from screenshot From
2016-03-13 17:13:52. 20160313 17:14:13. 2016:05-1803:46:32. 2016-05-1803:53:27. 2016:05-1803:54:43. 2016-05-1803:55:14.
[Desktop png png png png png png
D) pocuments
¥ Downloads n@dian-virtual-machine: ~/Desktop
dd Music dian@dian-virtual-machine:~/Desktop$ javac FirstImp.java
@ Pictures dian@dian-virtual-machine:~/Desktop$ java FirstImp
successfully
H videos <ten.out. println(checkodd(3));
@ Trash true
— You have passed test casel
Systen.out. println(checkodd(3));
© Ubuntu 14.04.... 2 t{ue
clear
B computer You have passed test case!
Network system.out.println(checkodd(3));
o Browse Network ‘
B Connect to Server N

DENMso=D 5D Im

“screenshot from 2016-05-18 03:55:14.png” selected (148.7 kB)

Figure 6.6: Feedback for incorrect answer

27

From Insertion Testing part, it shows that 'Odd’ option has been inserted, thus in
this part, ’Odd’ option becomes the deleting variant. After, ’delete’ button has been
clicked, 4 tables that show in Figure 5.2 is going to be checked again, the inserted
variants disappeared which implies that deletion command in the prototype works in
MySql Database server. Figure 6.7 presents the testing result.

Terminal ty B) o357 I

__function

PROTOTYPE_C_program | Wt

j Default for
me pefault for Miscellaneous |
PROTOTYPE_java_program Default for System |
PROTOTYPE_octave_function Default for Front page |
PROTOTYPE_php CR_PROTOTYPES |
TOTYPE_python2 6 | quiz |
PROTOTYPE_python3 Default for new quiz |
|_PROTOTYPE_Python3_w_input Default for second quiz |
check if input is odd or even pefault for Quiz Test |
alert test case Default for Quiz2 |
something Default for alert testing |
asdf Default for okok |
asfdfas Default for okok |
asdfasdf Default for asdfas |
asfdfas pefault for soemthing |
pefault for df. |

vzxevzxev xzcvzxe
rrrrrrrrrrrrrrrr dddf Xxcvxcy

sys1 true
E— + sys2 false

EELELT IEIRT

mysql> select id,questionid from mdl_question_coderunner_options where questionif
d 36:

Empty set (0.80 sec)

Il

Figure 6.7: Deletion testing

Combining all testing results above, the prototype is able to provide proper interfaces
and deal with question creation, deletion and answers comparison tasks as exactly
what Code Runner does. Proof-of-concept has been successfully completed in Java.
This process proves that the idea from Brain Storm part is possible to implement in
Code Runner site as Moodle is an open-source platform and MySql Database schema
matches and allows income data from outside.

Chapter 7

Discussion

It believes that this anti-cheat system is more advanced as it maintain most of func-
tionality of Code Runner system, except adding more than one option in question
creation. As we known, there is also a similar system called ’Question Bank’ exists in
Code Runner, the main different between my anti-cheat system and Question Bank
is that Question Bank asks question creator to create different questions. Hence, it
cannot guarantee that the difficulty of each created question are similar. However,
as each option bases on each question description, anti-cheat system is able to give
similar assignments to student which avoids unfair assignments.

However, any anti-cheat system may not be able to guarantee that there is no one is
possible to make cheat in Code Runner. So in this place, students could still cheat by
asking someone else to do the assignment for them. Also, for Stage I courses, there
are usually more than 500 students for each Computer Science course, it is highly
unlikely that lecturer needs to create more than 500 options for each question, which
implies that cheating is still possible by finding same option offered and copy-paste
solution.

Overall, with anti-cheat system, the probability of cheating will be effectively re-
duced, which is what we supposed to have at the end of this Project.

28

Chapter 8

Further Work

As the proof-of-concept has been done, based on the ideas from Brain Storm chapter,
the next step will be back to Code Runner platform. To implement the idea that used
in proof-of-concept into Code Runner by using PHP programming skills, in order to
make the 'Option’ functionality realized for question creation in Code Runner. Apart
from that, being able to assign each variant to an unique student in Code Runner.
This is going to be the first step to do in the future.

Furthermore, more ideas against cheating probably need to be generated to pre-
vent, different cheating ways happening in Code Runner. Based on generated ideas,
some more research has to be done to determine if ideas are feasible or not. Code
implementations should keep going as more and more feasible ideas come up.

29

Chapter 9

Conclusion

Code Runner is a plugin of Moodle and widely used at the University of Auckland
for programming assignments because of its convenient and safety. However, it is not
able to detect cheating becomes the most significant weakness of Code Runner, and
might lead to negative effects among students.

This study bases on the vulnerability of Code Runner to discuss some ideas that
could be possible to prevent cheating in Code Runner. Research about similarity
checking and programming variation have both been done. The research results show
that due to short programming length, a high probability of similar submissions oc-
curs frequently in Code Runner. It indicates that the idea about checking similarity
is not an effective way to prevent cheating. Also, from second research result, stu-
dents can possibly search solutions online or do programming languages translations
to achieve higher marks. So it is unfair to hard working students and might cause
faith lost in Code Runner.

More variants can be defined in one question became one feasible idea to be im-
plemented. In order to prove that new functionality is possible to be added in Code
Runner and matches the corresponding database schema, proof-of-concept process
has been done by building up a prototype in Java program. And it has been success-
fully completed.

More feasible ideas need to be thinking of and research has to be done. Also, more

implementations based on generated ideas and research results need to be done in
Code Runner in the future.

30

Bibliography

1] J.Cole, H.Foster, Using Moodle:Teaching with the popular open source
course management system, 0'Reilly Media, Inc, 2007.
2] M.Org, Pedagogy(2013). Retrieved from
URL http://docs.moodle.org/23/en/Pedagogy.
3] R.Lobb,CODE RUNNER(2013). Retrieved From
URL https://github.com/trampgeek /CodeRunner.
4] CopyScape. Online diff checker.
URL http://www.copyscape.com/compare.php.
5] SortSearch. Retrieved from
URL http://interactivepython.org/runestone/static/pythonds/
6] Wikipedia. Retrieved from

URL https://en.wikipedia.org/wiki/MySQL.

31

